An Improved Algorithm for Matrix Bandwidth and Profile Reduction in Finite Element Analysis
نویسندگان
چکیده
In finite element analysis, methods for the solution of sparse linear systems of equations usually start out with reordering the coefficient matrix to reduce its bandwidth or profile. The location of pseudo-peripheral nodes is an important factor in the bandwidth and profile reduction algorithm. This paper presents a heuristic parameter, called the “width-depth ratio” and denoted by κ. With such a parameter, suitable pseudo-peripheral nodes would be found; the distance between which could be much close to or even to be the diameter of a graph compared with Gibbs-Poole-Stockmeyer (GPS) algorithm. As the new parameter was implemented in GPS algorithm, an improved bandwidth and profile reduction algorithm is proposed. Simulation results show that with the proposed algorithm, sometimes bandwidth and profile could be reduced by as great as 33.33% and 11.65%, respectively, compared with the outcomes in GPS algorithm, while the execution time of both algorithms is close. Empirical results show that the proposed algorithm is superior to GPS algorithm in reducing bandwidth or profile. Corresponding author: Q. Wang ([email protected]).
منابع مشابه
Double Layer Magnet Design Technique for Cogging Torque Reduction of Dual Rotor Single Stator Axial Flux Brushless DC Motor
Cogging torque is the major limitation of axial flux permanent magnet motors. The reduction of cogging torque during the design process is highly desirable to enhance the overall performance of axial flux permanent magnet motors. This paper presents a double-layer magnet design technique for cogging torque reduction of axial flux permanent magnet motor. Initially, 250 W, 150 rpm axial flux brus...
متن کاملA Method for Determination of the Fundamental Period of Layered Soil Profiles
In this study, a method is proposed to determine the fundamental period of layered soil profiles. A model considering the layered soil as shear type structure is used. At first, the soil profile is divided into substructures. Then, the stiffness matrices of the substructures considered as the equivalent shear structures are assembled according to the Finite Element Method. Thereinafter, the sti...
متن کاملAn Investigation on the Effects of Optimum Forming Parameters in Hydromechanical Deep Drawing Process Using the Genetic Algorithm
The present research work is concerned with the effects of optimum process variables in elevated temperature hydro-mechanical deep drawing of 5052 aluminum alloy. Punch-workpiece and die-workpiece friction coefficients together with the initial gap between the blank holder and matrix were considered as the process variables which, in optimization terminology, are called design parameters. Since...
متن کاملThe Performance of an Hexahedron C* Element in Finite Element Analysis
The performance of an 8-noded hexahedron C1* element in elasticity is investigated. Three translational displacements and their derivatives as strain in each direction are considered as degrees of freedom (d.o.f.’s) at each node. The geometric mapping is enforced using a C0 element with no derivative as nodal d.o.f.’s . The stiffness matrix of the element is also computed using a transformation...
متن کاملUpdating finite element model using frequency domain decomposition method and bees algorithm
The following study deals with the updating the finite element model of structures using the operational modal analysis. The updating process uses an evolutionary optimization algorithm, namely bees algorithm which applies instinctive behavior of honeybees for finding food sources. To determine the uncertain updated parameters such as geometry and material properties of the structure, local and...
متن کامل